Attractor Traps Tutorial for UltraFractal - Page 4

 

General  and Trap Parameters

This page of the tutorial will deal primarily with the General and Trap Parameters that were not covered on the previous pages. Examples are provided for the following parameters:

Most of the images will use a SprottQuad attractor as the starting point. The first image is the base image for the parameter variations. The base upr follows the first section of images. The caption under each image gives the changed parameter settings. The bottom layer for the background does not change, except for the color gradient. The gradient on the top layer also changes for some of the images. Some images use normal iteration for the coloring mode and some use discrete colors. The user should start with the base image, set the new parameter values, and then experiment with the gradients and coloring mode to try to duplicate the image. For more details on using the two variants on the iteration coloring mode the user should look at the page for Mod Iter in the Enhanced Formulas tutorial. Don't forget that if you select discrete colors the color density should be 1.0 and the transfer function should be linear on the Outside tab.

SprottQuad Base Trap modifier = 0.7
Attractor scale = 2.25 Attractor pre-func = abs
Attractor iterations = 6
Trap width = 1.0
Trap rotation = -15
Trap width = 1.0
Trap skew = 150 Start offset = (0.2071,0.23669)
Trap width = 0.9
Trap offset = (-0.32544,-0.04438) Move trap offset
Move amount = (0.05,0.1)
AttrSprottQuadGTr1 {
; Copyright  2007 by Ronald Barnett.
::BCQbVgn2tz5SvNOyRc87Dg/OIoTJZjl5bJnAew9iggEMXSm9uRbyWSEmikis9YZh9DfqqfTS
9yBbWsBLBmDV/q6ur+x/m/8Atulmxpl/l7+ysZ8CeJLd+Tce73aar58/1b08/+P16Pf27F58
tpJRez2yK2slnG7HMrk+BrtLNCbbWLLvg3lO/fXXRLznRotVMO/vG+QgH8Pvlzv7Li6L6pdM
+2680dvVyLaoddzyoN8i6q05fFrzsg5zqboZF8PS998mxbpVdN0WWFP9DWn0DtbY7qzZpd1r
5l4Y6uvsj20UUtR0FZQlZtp37vwblv/KvI/lrSewbRccScQ4ykH98jntjupC6hFReBxRzoVb
g5/9PuIEK/uvsuuFGgU5AmeoAdHMa8m1waz2yyeNte96ZrLKZV0dQcrl9yi3Wvb+Monb/Id+
/8tyCKhWUW/GfO6kmn5sOeKMqBzXkFk6zihUN+p37tIIGGgL9SCiv7LFVdF5M56CO9XD9eVd
F7uvAtacRlFVMa7su6yi80I/HjC9iGO2yKFDD1wDXmh1+62fql20NHGEfHWNxFB/FLhUsDw8
kD9paoD16ZRAf+32RLLhZC27NYDzqLrblF+PgoEFXKltKvoD2ZwhGptmJqso/gGISkGq8/3p
tp5s1UYbhs4Uf0NrfedVYKNruDyVuT0TMEzFVBM6Y4kpBGstwYTEdhlH1WFpvrebnoqwQXsS
CFiN81imUYF95q6nrX/MWSnINatB8on0DNUOkRloI0bP9u8YwTq0EVaiKtY7Z68dFV/hn+zk
/4c50Y363qyeKFW8q46kkUKnWJmuNpz/TzddA9lOT8HifcpXlj81Pr6kqasJf0weK1eqFyC2
81KzulRLlOJb3TpJLCWF6vS5yuMaJLr7JIi6tSUDwOAnmwWeYhtTEJEroQB+qwR2W/ngjWxC
zAwMUYF+kIEb97Whf9FFiNPW2chr3W00z3ozQ3CnGRrApvQf6ZjAC3utR42EsYhXVucbdzgR
LUwewlhRSPsX509hyuz4x95CPi5tfw4cPEN75Vc0VSFzfhF4zgFPKMxx6iVCzI0c5gBeJVNo
KpdmOE7kSKvXfIWAae9oZu3867g9Dys9xeMISYHICYhCbo7hLRSE3n8KMAuPAKR3+YcqDbae
F30BeoroykEcCe4SnMsfpRiSl7gl5ELrgzMr5VZEt5VxEzXNvae9kbfKL8lLElFBajh7dKL0
loCV2lkvC7sHHu4t4aScswMQt8wblrJDWI4tCf65Jv5B39p3yzbHvHCXHWEGPc58ocEeEHBq
WfsgXPu9bZ48dR8w9xM1ueWnoY92YGcP/ojGdN4yu0DdNqwWXjY6JLPSba6guGd1wOwGA7KY
nYWaa2GRwBvgdjziG2wNg66paa3e8IpyoKt3lLd7tjb8wVoeQIusa88MMX5KwoSbZPJAJMHF
s9B2IfVd70nCF9SY/TvxGvAqVmOCtrcSc0tEZ3NYtT7AfT10xCVvC5MujRlsIrAw6qYdCQYq
SG3FqSiOVazhrxFJg3GoGFw7OAFPTmCxjvDDGhUAaS3Bl6LiRQQ+pOOzokJ8tMDj3lJfwIu5
mGUQIp/IcZt+orUVhIUVECGkTLpQckUIwRUnr+7pqQkhNQShYlUIGJFiejrjqCxRVhYv/fgk
CRJpg1WJAgOWqqQS96LpQsSKkeCA9VVIaVFCoqIkUIKJFS6wz37zJWVFnx5AJFiWSBn/qoMF
crRVhYVVI6X+YlUIGJFyg7J7rqQMqKyRMIpQsSKEHJFRAzIcAdvjqCRqqIlUIuSKk+SKkhiG
h9rQEpnmTMZskiJiCqKkzpqon+F+Etki24E7dKL0F2RcFgHIpQMSKEUSR/KScbpSVRvm4IpQ
6JpADent882xD5jEpqSPJFiSShovz8EqKEjqCRJb4IpQ0SKErizpUVIaVFiQ8CkUIaJFiVSR
YO8qvGdN7kGnQShYkNsqKErqCxeV5IJFiRShYuzCsr6fgtbvacjnsOrkCx5+ei+KdiVVhov/
2cUw9Ce7kAVVInVVhoFug78JOCHYH5K3c0twT2jCH4IpQ6p+OSVB7YhkCxVSh4KpIC62b+Ju
qKEHBEpkCZgkCx85HKVFiVVhYFRQH3XSholQsfAGxRVR91SyOa43wCfbzL7sD7K5QT1yKRoS
1SoerxPfX4FV1u3/B5ZUbfoGDdwhaZVzSjFGNvDfRvwimnjdq8bpQLMbMa6n2tvVLdHI/IU0
MJtt+tK87s62W/uulbpBSrstQsnZezl87mP+D/8xfG/Avjyi9TnryQUhgx1IQWDHvEOuShG3
AfyuvaBCMDtmBop0LQqIbBxWzElJ/dt0/7BGrQn1y3jMZHbsSUWwHx+DQAq6N8SdzuSZyAZa
Z0UmV4gqENIdc6RWbtJZiIpccQz/OX9tw8DwWTBpIR25y1gcWGmtn085iqCe6RZbPCPhBitI
5jZHnLWQ5HicOExPEbOFhNGfyT6PyKK1bFgMFf4+WR3XQNhqDFvEojkHKy02oTkbd1SS6MCk
f3DLjfgrNB9pdwoNQsyQztLY08Y7SpwFFHZmW1tpSFRgoQzGZYYTFtt8ZdkQmaYsIcYsIpXs
YpJWgT1Qnpaod0gz2QnBaij9Slts3FBTxzHR3vJl+iiTjsYMqAiCiwtsGY2mottSmYpTWyop
MDEgXqw0klMuariM856l6MO97sOxV64WsW1R7Wc5RedlM6pCdxmQnerB/gvXvwnvvN+1CBQz
TthAoerCYn5eIlmDOxGA9dOXDXphvTtLLLV+YE8QPebYLbvRvAyNQ9WRwMUZ2tFclUgBsCMW
hGrILytjtOzijFOJ85HwrFlJCgE2iChUU4lcqQKrWFy9UpwtoomymWaeB0IJr26d7A7u05fr
YXTJbGU6HilzZ66tY+sud118tiN4g8jQBEeT9joDKgzjHg+QiT0Pa1y4wVBqs9DDVFkkE9YU
yjq8DSSkduoN+ri9ieEe0lC8sYgp6SYHguH0YpDwXFe7At9/EAtzptvyq+9INbYXUnIEBP/8
3cktlHzFR15DgbbwObIav68EtdwZLdznjotLOblQ4nkotLObbEYio9ER7Ji2TEtnIaPR0eio
9ER7Ji2TEtnIaPR0eio9ER7Ji2TEtnIaPR0eio9vyEthEK+0eqcCN54nsc5yA8d9/PhYd4VI
WP9/16fjQkGjrF83ynoSPRleiK9EV6Jq0TUpnoSPRleiK9EV6Jq0TUpnoSPRleiK9EV6Jq0T
UpnoSPRl+/Kq037/ovFL9QE0qsxKpxV/LOVaCN71NCtgegpnAR3Orl1woI9YNS6gVBhrig/9
LEV6eIp/xy6OYGpAU6Qj+vdoZG+z/x8bHCt+dzOEoBh/tXH/cF73t/If8VKvuOj2uuQ4xJ8z
T4nnwPPhfeC/8//ifWNYlEo9X8YyyokHgz4Pm4HHdRO09gGMGF9V4Q783Z9koovCH6h8iHhi
+W4QrVa6ji+ycoPr8SPU0D5QPSeZAK6rzhWLv4gi+icoPr8SPU0XlD9I5lhoovOHaj8yFRRf
eO0G5lrii+yco7JvcaU03AHaj8yJRRfRO0nVeZAK6Tyhek8yYU03AH6hyLOoovJO0jkX6ji+
G4QbkXOLK6zzh+syLkhyLD4QfB5leoovAHaj8ylRRfRO0W5lzhi+W4Q7KvMEF9l4QfS5lRoo
vAHaj8yVQRfRO0u/1NPFK6Lxh2hx9ZQRfRO0GJnTji+G5Qr8y5RRfRO0aumXCF915QrGDjQR
fVO0OUmPPK6rzh2gZ+CoovKHaNq5zhi+m4Q7Ca+0oovGHaXPcSU0XlDthU7YU0fKO0WivGU0
feO0DIPb5G/Z4QbJUG7y2+zwh2l3avYxtxh2wbeMK6bhDtbvfCU03EH6RcndZKf7co75GdE8
Tyh2SxPeY07G4Qrv37Eoo/McoNQn7hi+25Qru9eIK6bkDt5vP3JRR/rPHa9P4HhBrS8S0Yox
7FU/efE7tMOxX/79hnn7v3HRRxReR6/bVbajvfgfQcc4nCg9/BQyw46z
}

The second section of images demonstrate the effects of Initialize Height and Height weight parameters for the 3D attractors.

Sprott3D_ODE Base Initialize Height = -0.19
Height weight = (0.25,0.29)
Iteration options = normal
AttrSprott3D_ODE_Base {
; Copyright  2007 by Ronald Barnett.
::WEgV5in2tz1WvNOuV43DQ+PI4na72xRSUS2pF8BzZ3C0iFoA723NYkptFiskiIzEHj9HfPHe
TXcycpFT3HKHMPc4tDP87QyPxPE4998SFv+vc7NRRqKVtguYjS1/rd9tKF5H3+P/xfaLjLFL
iepan6ItILO6oo6wRFNPJNqm/qoXSzwhfgf6Enmsc1q4J/LNqsXsrSJpL+l2Ge9uIGvvRoU/
VydpJ3lGHvaxt3o9kOMOJUHb3RP9ctqqjLlRl8OVVbDdxPj9JKdRUbHvsS9KNJOOS1zbkd8e
Rji+qQa8Q/Bxp2dCqsdvqGj2bv5Evrrq5geKKhOL6pfIe560kMy9k04cydxLzTWlkUsOnkmk
Hdifohmkt8eS2q4sIezBAdSKufJpoI92b232DhI3Ey8zVoDh4JOqT0XeUU+Itd/+o9V1iG+J
AW7FPs859nWEBzd/r0F/jnrreUsAHe3WlQqoQEDmPwrqbfWp9V8Swdb7SoxLzIryhIMLLfNR
/vbvpqRWtTYSdIIsHigm2Gxt3Aj/6mqraE8+IZbd1OaWy9ZEYVNL+Kr1BkNExdCw2j2+/VPv
TuAClPBZbMVAZZok4MsWVwcirAoLb1Y+frqXqMLry262eTt/dAf4YaEqeXlE2SogJ1ZFp7pe
KgerLQJWoBc8n490di9cYLhpH0ko9b33Qo8yWJUlZz5yM056mNjVKwVQHEh9n41awFyLwuEr
fbe+E4put86ad+z0i8xqOasxDNtbb3vFbUSxcBadA8oOvwVQpGtN6tNvYOYsZIwZ2qY2y6dm
0Fnqa+Db+zs/4CYVca/zNlboQ6qR5KyocFvx4mTtd0F/pFjdA/BpB0B4TZcpJy3v1ODNt2Y4
1OxG64TzQl1V8eTD9CNqUeaDtYZ6aSyazwQ/KL51iS5GYvX8adnA7UctC72hMrUjF6UK0QC2
Q5xkN0PkkbT+HThSEtFZjGnH87RtfT0NiD3OGtrPW1Nx35QDonj15X0r44QfGPLcP2pdbB2s
2rWXest76o9JwlkMjHey60nImpz7xn2p9IW3TziznemvbiXxormrhAtF4z0l3rNxYd5atZGa
uaWgXztBVNX6nQcSq5qJzhOB094F/av7xXA77MVngzYam2OVDYEtNM9wddF56CQA8hUoF34z
3oPN19IuzD8gsqxXEcCeAzVkMt1Mdrofc1kb6woVW3jGEt7R9CLxuu6ecWCxEN1VJmERdVqz
Y+en6KXLWoaIl8zwO7rhLVPmTyz1mp20jq3kTmlIU9afGHT09B3952yr6vePEmHWSynnOvYi
wLYEYH9lKV71j/oAXvLznvPWY31Lk6mdbjFw17Xd0Q2hpd7FedWYT2pXem2zcm+JQ256GOBD
AosS8GrS/wOoBH8q/DjSa4APAUrv1QlPhHJtGmrKHCinGib8wFxFE6rruedS2ZdFY0QLMWDn
EgC+jCDzBOoE7okuTh6ZhM90bu3LAdlfiQ7GzFJmSXG3kZ+ml8ceIx3NHYYnWomrnZkODyT4
9+abzJpjI5UjB21MT6p0Yrgbx1FgPLwGDwXcAUe+K1sHfCCFNZBayPBtmohIAj3IVCPTn23m
K8e3U8OPB34yABCj+R4ua3JXDpCbgUh5IVmyowGxowgToju5fCpCzTqwQSFDjCzzowc7bHRq
wGRqwGu+fGjCzyog92e/P6YDpCb6e0jdsBGF2k7/nSqwckKMgURzowsMKM68j3PtjNQqMKOn
xowcMK463iycwteSF2ApCauaKjCzzowmdN5USFmnUxExAjCbgRhNiRRDYeeDY6HRqwMkKGGF
2YGF2UGF2cODy0OkxmQ5kzumRxjoApC79IVcL/qEmjRxZ8G7dqrcNKZj5fnxow8MKMkRx9he
42SLpiLnMiRhNhRBC+Rb5V9XHyXYGSlJMKMLjCzdl5bQqw8kKMLrxIGFmjRhNQ48WkKMHpCT
zdBMKMHjCbgRRbO/ivOXPlGj3gRh5ZNGIVYDkKshLKviRh5ZUY+7sA7rIVsxNey6dZUYjuun
5uQ36KkUh5u92fUY817DLCkUh9ukKM6AvBbEtBORjZbuMux3cG1OYEhCbC57VcK4ErJUY+3V
AMKuCaKFNoPczPbMrCbEBihShNjSh5fhhlVhNwqwGIRQHPlSh5oQG9GpRsK2nLZmo5vcFefz
DnGC7GToZHZjGqsjE63eAhMex2tPkcn5M6wcYjBJco201Sau5F3vAvlXbx3tDnUzTcRLsaEN
Toyn6dE3pm3himF0+2nbwHyLP2+ibkH5pGryjA2L8fyl+pxLu8D/2lfDfh3FTzJ0F2K0dI96
eka6xIvQuuTEvbgHqnYTQgJZwMFNNeBKlN0Q+gZh1U9ij6/lUvFZUu8lMf15erCrF8K2fAAo
mnxL197KNFTNlNoppKysukNrcO9iov1XsQX0EH8dfS5ej/ZYrpWlId17svaWUiVHbM3W1Upo
XMj9C8JMA2i6dEdZhOhqOnN6Qk6cu/UEOY8TeofUUV72KAVq/Iuj6pvi7hqzVPk6QyzVlOb0
JmtuOKJXFpmn9IKVnVOTgf6EEtp6MDf3QCjvLfIVqdR1FhfUyDNWEBQhuDGY4QDvverDJMlm
jFk5YRxEsYlHLwlKZ0SlMEN4qlMKQLGZvyabmdNYq/8R09Ho8HkGXYaGRFgUQD3megV7R7hO
5xyRVZQTTFo0dUtpvKDuO0FD8N2LtlK+nES9V64WsenuXY6xcdlB9sQXuH6cbNUnTinAfJJD
4XPAg+P1GAQ3WFwuc8hU+OwJDAYyoz1wVa6HFVWSNfMCeoHvNsX8knvAqN1+tigJxaKPCuyQ
wAWpeLi3KzgGYgfpf0q4S1oCJqz41imCpQhhmIQJO8lcWIV0ah8YbJcLKypconvrCGkW7S5p
2W1REoBeFN1GEPVwZszw4sqEmUsKB+oMTtJEit+i007vXHymWSLKstkWkvKH+ufrIyzmIn3d
SMnifl3Xv40JfDiTvj3/ooJoM9vzKT/Lm3r6Fl2LWsXJ61XLDt7jf+yKR/5khe4jg+cKR/5k
h2+Oo3TJ6vSZoNnsfflo/cyQP818vjS0fdyQbTLDKR/foM0OtnNKRHkhOIDdQG6gM0BZoDyQ
HkhOIDdQG6gM0BZoDyQHkhOIDdQG6gM0BZoDyQ/llhus90JwWSX8rVn6qFRQrvqTnRu+tchT
DZcD+ga15kBJohCWJodyVT81kUsa1qU876/uILN5LILdQC6fXlg+Hhvxi3UK+CyQH+DiO8HE
dQJ6gS0BloDKRHUiOoEdQJ6gS0BloDKRHUiOoEdQJ6gS0BloDKRHUiOoE9bqENpYkS0ki5KR
7r57mS0Me5jH0cBTEj+/fFfG2KI1I47JDd66Uy6M4/fPUi+j1tSxboF9if6cXE+r1xi/LUje
53qc0NigY0BxoDiRHEjOIGdQM6/XLGdRQL6gW0BtoDaRH0iOoFdQL6gW0BtoDaRH0iOoFdQL
6v7aR7+h8I/+Vrunke1PkHprTXnXc/wPjHm5WLVdCZV89oEyfDSV/vhYmcI3
}
Page 1 Page 3