Simple Traps Tutorial for UltraFractal - Page 3

Trap Basics

Simple Traps Enhanced has 94 trap functions. There are also 9 standard trap types which will be discussed on this page. These were the trap types for the first version of Simple Traps. The basic trap types are:

• sum - The trap is the sum of the real and imaginary parts of a modified version of #z.
• product - The trap is the product of the real and imaginary parts of a modified version of #z.
• quotient 1 -  The trap is the quotient of the real (numerator) and imaginary parts of a modified version of #z.
• quotient 2 - The trap is the quotient of the real (denominator) and imaginary parts of a modified version of #z.
• ceil_floor - The trap applies the ceil() and floor() functions to a modified version of #z.
• trunc_round - The trap applies the trunc() and round() functions to a modified version of #z.
• cf_plus - The trap applies the ceil() and floor() functions to another modified version of #z.
• tr_plus - The trap applies the trunc() and round() functions to another modified version of #z.
• fibonacci - The trap finds the closest Fibonacci number to the real portion of a modified version of #z and uses a function of the difference between the Fibonacci number and real(#z) for the trap.

The next 5 images (all 2 layer images) show examples of the use of the standard traps. The types ceil_floor, trunc_round, cf_plus and tr_plus are especially useful as textured backgrounds, and are used as the background layer on these images. Study the uprs to see how the images are created.  Note the arrow-like figures in the fibonacci trap that seem to show the flow around the image.

 Sum Product Quotient 1 Quotient 2 Fibonacci
```SimpleSum2 {
::PuAWHhn2tjVTvNPuR47BI/HE8p2u7rtI1X2tgHMXU0L90u7dDGJabhIRpViOx2Y/x3hfIRK5
8hzetJAOYGSqhz8MzQR9svjlLZV/zHfIIQWKr4kF/WZdbF/3OVjXE8aZh8IJNOM4Iv8wRJJB
hDqYX4d9Es6ZOwqrZE0ysswJ/hDy74FlyeyiftRwqKCosOBXK/X4VosV4wwsFP+g2S69umLP
2UQqPVJLbZ99B5sWZZjgs4/qWTAaRQTLLvUehgCDDkdMRfLrjLkkL8+Hfom12WKOotVOMKvj
EuMKdDOOLOCnFns6HhLxI0mk0Qs6/RB1sDCS2y4Npprxrf8h9Ndw2zMuD7cpyGweFG0y7yPy
zfm0sffw+yKugVD4UH/pln2XvIA2uuLkF/HwBr6Z1XQLUmod3LAKpCBlD3urFBeUSSKOZF4J
RIcCMok3LJ1NFg4TsyqmTS9WG+4Dli+yCuJvoC29g3IaE8HfAW0tTVVK4sug+mqyCCOJNdDK
OMe9c3NvS7bWPuXnpBb02v7fLOyE58iF+O+SEoxPDAgE2cTUpW+Owl5ktw6YH4wY5NVNdmBX
87w8astUeqgrMXRZPUMI5gJ6qZVGzALW/Uk1Wb+CrjEbmggC2vbvIik30DjYKCDXiUIWheej
N6h6J4Jt21aHQTZFW/zqKDQsTLrH9JW+zm6lhIRcqmoCSWVlOhbek+nLbJqkmoZXz+dqZ616
KpDweEasQLTCDI0Tps22XNdJbt6UrO1qXDPNAR1li/22fm+315i97q3fSkvlA5UhcQlSYSmQ
DHtkF/jF+Gg9U/Y2AwWpxqGPf/O7mojX5lW+WS/pa7KBMeLZxWon/oosgFMUpy2CwLWBQbhk
uKaybVDFqQ8WxWSkyY4tktGnC8gXYVbdQpgforpRuVttqUXsLc2LSGUAglhG2heGWLaTlsI3
ExOxEnYqTMbQUFPgnbji2XB1olhrgfwOz2LgdTVDplhtrvUAy9gizlYiDbHyn9PzfVH3KZJr
TqVWZGA6+hCO/RqbehbOsZ7YCxNGrGWMaVoNPQUpV1Ra9ukxbmLGSFjZCXiwmHmmGsZebKw6
I6kgfOwPF4yAjSROw3Ppk4QfH4Pi9WPVh7zgdFqbcDFw7h7+wOZEmvBlHGYOmaKrbbqYdohE
lWDPRLSrZe4SdNnZySdR3ockncsncy0HP1bqsx9xU6ZE1Feh6UdXj07p1FU9Su50kSR+QV1K
rOEuDamoy9sm4aSY58DkXE5FQT87YvIyJm6FMuYxPUU+jxIQwMsarrfem+FyYa7sT8izPUl+
03q2nOt4XVSQHK9puaw8Wqr+nabAoT7AoTbBo+9AU/mAqfXA11G4Ejo+l/xuJScipOxM6YzA
d6BR0ZdEUvDioeNEU/OCq/BRU/Dio2iET7xgmrxg+2HARtHAZqtoT6YmoFRn2xQ9qv8kj8kj
9kTm+4peTlRdVZU/yMqrjhOtjheTHDdSHzgm9truatZ3GCed4T12tUMcwi+JF95M4uuhmlsH
u01oNsr7HoV/QdxApbTUa9q7nZEzJJmg5V9BhJ2cfRhaTNv+VJh0lAqzE7/jOtEmwM1C7Fpk
umTC11/6P28at7SWHh2atNyhrlBvOX5K1mLYd9n+zr/pqf5qZOEZhaAb2XtG8tLCbW0wKiud
FR+mBuzHyW6AiRORsTM2Jm4ETVi2g4VLaLfFPKFNKFPKlMKlOUm3S+JTLs4k6sjxmYjKeme0
Md7b+8tQC5KvrZUN1oqyXvItHfIPDdM2brDDX4ukFPXNToREKCLlkrKkDOcDbvx71F6Eq8s/
bdlnTcei5h1XF4X4lV6FAjovo3R92XyGxpzlPNA1gcO2hqKjYqeR+a4BV5Z54MVl1gri1ZGW
RszIK1hkm2ElX9sH8dRGEBQh2Dm6wDCWX1ONMYMhZgJYR0csIdCWk5jFqoNyLaj8iWX9GrI1
TOzFAmdXDmdcmBMPQgXHMOnCVgvI0h16hNotvNcYpnO2bA13FS0ijDZwV0EzMggG1G4rqfh3
TSslY2buI7UpHznLYgOjNUoXyc0DFOB+QoxXVI7A0z9aal6TD4HIn7hZgR8U8aqhzsSVn7kn
PEIyOVTv6IxO+fA9BmhUXvIzIGZF7PCmSvSlEe8zxAloxhjtfF31Ovo4apnCCuNBcmoc4d1Y
Q3NbEoxUvnEgUejFyDtaqSUV35hOWRJ8Emv7vpuGk7HowIAm9iOdGMsulLC6rhrIcUXgDv5h
pJZ4H4QNUWCNkw1YCMfZKCHvBhCXbHWdwgdiQEaz6wU7E2H2MXa661rRY7URunJNGnlFBQll
HDtLbdGo2YYrHY5Ankcf8jQhvp9g+tIToI5bKRsXC4WGQ+Q6Pm5nTZAZC9H/SVTP4rTp/4X5
DEcMj1jvAlHmnfk1jRSPmw4hg/Z8dYMzAlH/F47weduBKP+K8d4IYZOlH3JfHzMghyj7kvjc
YwqT9OCSul2j7izDrP8m0ecvceM8lE3Q7xXhzjBjMn2j7lzDzBsvFtHfInHmt9zo94N58w9t
ffOtHvPnH2vD+Op94948YMF850e8WceMC+3JtHvHnH2PP4uo9YOnHeEC850e8eceM+1ZfMtH
vHnHDMe+x0e8xceYdh3h2j7izjxoYOtHfFOPGjl50ec/ceM2cMn2jvAnH2Sip0e8V48YC5r0
xeg7nzjRyXdT8NnHfz5x3ce8NnHfz5x3ce8NnH//GnHpoIECndDlHZbwbiidEeYHOJKGhyic
2xR4BOaTWWW8Xivj/Hwk9Zgy
}
SimpleProduct {
::YBvb2jn2tj1WvtOuR43DQ+PIona72jjE1tkWwHsWsooAbBKa77GMS02CRiSrIdidw+jfHeny
2JHfeuJAOYGeZInvZGSqvtzkGBp/vd/dRRiORPFH/f7Gm6p/75x2DNi4o36aF7xl5JR7pd72
LwFpooeyJ6MHjkTbHZYggTXVVls4PUUzMttTwxx/nRGpvNqmMzoCxfH9Qa1Dokkq47vTZJ1y
PQF7HbxDH6FdTEOPqhMJ6GZ44fVOmo04oxJSTn4EONJJSMTY8JyMlJwno87vbgMN1x2psVD0
KdGnsKr8JUeVeGqKv4hvlsClm+URZCS+/soByOGuaV+TllPie8+72OODLPRvdIH7k2AWrkoJ
6czeazL4xtbj221TZkBAqmpPv6w2h4IY5mPhj/HwGsnTGOlGLNx0mXBUS6CyN80mpUYHVUUi
KeA2JZpoCoRBlLwDjtg4zku+xDC1Smc/ddMeXLVHakO7WY3wGZ07vDG0ld13xok5oZ6ElIgB
GxH77axoiyynSzTyf88NeTvaXa27cVYHs2Efzvw2TYN024QXYVKoRPCQh06a/TO8Nwmni/VC
XAN0M2POrb5fBgbn4QLFautjDJDCKMx5BSveywoUDH/oxSvSmxt0tEIDQ3NONa7mtsMczIHa
RnKmsqSP/W9Im2whkKY6GjbMmEBAjQ4vITPAxZlsq1nJNvoTasOB7wgyUk+eVUXPF+LdTYZk
jNuZc7GZPcluUaHsGJaLMREQDMVXSrt+NdpyajetRv2oPAzGiCDds/06/a9fWFG2uZY7BWza
MEYZCraNmIIMFaMhj/LxhGg8M3FIAAWotqenvdjZRU+r40EdNeSXS7nAg3rxxrhjA2z6aJyK
MABWDIMSCSrhYu0jamkNlITWnYrxZGUDtGvWv3gNyrk+1mlmR3NPOKWLXaZ0L37SbZFGFtN4
kU7iwJIvYmXM3LW4FLViWjUZ7Q6P6NPZ6NQObVyDwPYlJbZwSJTjUywax7YaYnD62tIMR2u1
q4I/F6bK/WKLIzClCU4aWW4kAIvz1oKE9KVfwzaTynrByAMy0HMTVGOwyor84NuPYcZswGKc
RCVgwk0xwZq4wywwyogLIEGDOLE4jA+AgH/9wvH9XA+OsPA6PD5DAeJubA9wtBA7YHSHgpaU
+qgsL3fasnMnajVKN0CtMrWnKhzJrHl2IdqsOXX5ByFBylByVBTfSn6pWSduHshlH6MKcJRy
EKugqPRpj1YzqspFQTg7anp2rW4UL8pAXahXg8dEMm8A3JwbCcmF+Sor49E7oNb9jnpfCHWc
Y7FEPZEl591XLxveZmvJlo2m9X7S/r9HEVby+rXm+X7PX3UCU7qBqDLCqdl8ACW7rBqDTuz8
dk7FL8ilexqaXlganb8CABrPrcoOoeoOogoO8Uoa7lLy8m6wDiqNREdthVzXYU7qMWcAUt8A
IXiV9iMrFaZ1LSocDtThO+srA58A5ilTvMorK36oxIXOWtPJLY2KP/iKG7Y1lLWNzNsu5e+z
igrEfewskM7pKqZy4NE4dvJ6hsFe9lzGmx9t0H+m8xBC/iI14yHqpFbwFan5N1pgmToJttyF
VfFsUKVlCIPQk/bzKJEmozF2yKxzjHYy3By3P+2g/NW7haalNagXlBXpL3KDqnYF/+P97v/7
ybKeX3XKOW2gJ6LHD6yBh0DyOisLHRWoZgn8laSdAxMvIyLm7FL8ilBX59mBtFvhcSZOpcnU
hTq0mmPh/J9N1sDyzOcFxaV0Z6Znpn7vmx2UB+d68oTtUrKjXvKMXfKOCVMmntDN36foFtR2
TiWESC7E43lIHc4GAs/P4xZRvHrCoijh36KOu4eX5kVvD4npd9qBAtoes3e1y3Rc40xuntQN
I3g8oq0I6s30QNkVVcU46pvbA2qIVkh0m7NiU1G0Umo79A7BfgkGRAUYanOPcHjM3vRBDaTo
bYBWkdOWUuALqCxCp3mF4tZBerPfj0WGIX5dA9qrAzZKRDm7ww1Bu+koC8phesW1sGtDthHL
e+HRIVf2ifgcTAmBGJQJooGOzqUeuTTj1REzyie5Riz0fDqD0NJfbRlWMzIy3DmS/VYgEyOf
pSmr5czHy9+cgX8eXgSK8aC4MRTZKcuIo77ND0Iy7JBIlOag8EjmMFVWdubm02BzQTAw4wAI
zt0ZEB9eSFOjsjbVcEfAefweVCOczDRx2w3QJKosDKIh3wEp/E10sKUxjmGlHLobGVmnUVZb
3MTzMQPVllklb6LzNn0UYcpPCfFvmND1+1sTgED76a56AVUcbskUDfU7O1VILIK5LiRMvA4S
2P+UqPObfuk9jFUf8z9jcYvqnQABIx/yxpo/JAVxXyAyHR/RujakPg7j0rT8Bj6p9wYiPl5j
bg2Dzjo/ImP+MaP88q89Y+4Tp9wiFfAzHfOtH+P1eNWMvZq/A/Hg2DTw8MmPuRaPsHidVmP+
u0eY/2jPj5jrS7h/DO+uMf8B0e4f291Z+4Go94Kf4xa71R3EtHGv46Mf8DQ7hLIcJzH3KtH2
IxZMf8DR7hebcVmPuZaPOHT15+3ItH+vj7CmPuFaP8fH3FMfcD0eEkQddmP+EaPCI35TZ+46
0e4233GzHXn2DtRuRmPuOtH+jhuFmPuk2D7BR3IzHLp9wVDc7MfEQ7h7govY+4LmP+i5jvY+
4LmP+i5jvY+4/3Y+INJ7piikL4+IN7xksysrx9B6pykcU6FUfUkiSLlD8Hg6j/gcd6Qf
}
SimpleQuotient1 {
::wvIpDjn2tj1SPOuNS47NQ/fQwn2ksjbJqXu3AewKIJXSOsbydD2S02CtElGJ6utNmf8pK+Wu
nFYzCkDBwNgbUFfUsqv6Bpq9TsaJr7f94DRRyWZHnu63a7H74/7TDyWuQmsK692G5RaRWc0R
e7hjSaeCJqjdhPNTJ4GPw67Z0k1llxL+jEVPxbalz0V/nBBrrJqiNJ4S53TeKp8JScc5qHfQ
yqGGlPRjXnW8MJrMLlUml/0niXTSSeOvImg/PNqndQQLXn9cRxGymHfY/wEc8Mt6wO3iyAOr
4oR+U9Re9r0h97j232xFseAsm4vs+0++VRwxNdhu6nBFsbm1fJZFKixdvBoEaCoCPubMB0o8
8CS+TgmkmQyhBl8ZJdiz6A6XYtdDnkqzM+xHaFztNct3Bt29g6IGE8HfAWkbqGOsMAUIrz9L
rrVwZTRzDdtNUSeRxzJZxZbuV3r7UKqR9nV+eQGjz7+RxRmom3sK0KWnAc8zAaIBFRbi4y31
P0wp/EbSeEsGYw6huhJ9or+dYBRMxhOOKrm2ZIsQyh9P1z60yAWoaH0NGB+GbimpnguG06d7
Fp06hZYId84aCKLc6EtImhALYjGxaEDwhChN/KGiAkTKa1ovwqfVH4YtCxpeKagsuOlnXvl5
XbHpo3TMsbY/OcmZFPSdAOjYtEGZSYAhaKUabfXnus1wXZ4rM89wuB0pvV8P2+Pr+GlfY/u+
9nE1bpgvVItsVUmkJUoxId13uKUAsXmdeCAalapq1897MHiyelXG5bpf2mY73Cg1bpr2ClCO
KabYYeGgBbhQVEjfZL42RbqeEHKGDZHFbppGcjsluVrdgq8Grbr5wF8DTDDyt4hjuvMvRtXk
bYMuOWi9QmZEPZqnMzTm7JLUkWhUanAtHtyzGfHoTXH/E8DOZ2eBcUYckiGOr5WhG4nBerKC
bUcYryTO/K/dldj0SIAXxApvmjFqHAReuBVOp346yPbNhfuBY9wKTeysV0hQR/LWkb27M+ov
w6KceCljwE2JopK/wS3wSvgzJE6DuxF49AeHgH/9wvH9XA+OsPA6vB5DAeE3NgeoaAwO1h0B
YqGl/qgsL6fcojNlY9VKOyCuULXrKgzRrXlWItqoO3UZB05B0FB0lBbfUH6pOSdsHowYZnBp
NM5wOLQexQix9VftA/qlR+mQiKb0flL8vyXIqyE9XtM8vyXZ3kCU5yBqCTCqcp8ACW5zBqCD
uT9Tk5Jz9kFeyyKXmgSzNWBggV3kOUFkPUFkQUFWFqye9CG3UFWIqy4R05GWOfiRlLzYRBoK
77hgLFfp3ckCbVF1OFz1M49vx6lsHeCmTGm19pkn+E+8Ap/QQuZ81aayaau2YeXVF0Uhm10g
Hq+SYkKRFCgFEn/8kiiQZ6Yh9iC60wJRDa3HHev3/MrjQOtSG1wDzgL1RVpX/Crrf3Xu+F8m
ir65SorwBMefcNkPuIieR2Vk+xVkGKG4VfJmQHgM1TS8kZeycPZRwVevbQb57EHVqjKzRl7o
Ksh5j0vTfTt4EW7wlErZJ3wneDfm/aG7Q50r8pBHbhmF9XvJNXfKPDZMmHvDD34fqFvGnJWT
CBhtS6VE5gibEzTevuS5QlnDv1Veex9u4mVvD4H4tdqFAjoeu3R1x3yc4052XsQNQXT8oKKE
d0bSIHxyKPLdz012DqKR5ZYNZehgsWnmSEtXDkH8ZSaEBQhxD64wDC2U3OFMoFhegFYR6tYR
xCsoMELQrNNwaTDsWf8GrpIgu0bA6TXBmqvmCPhDU46A3cIqAfgoHrVDrR7QZ4xyAeSwA4nJ
SVkuh04ayCxYRQN7A8l2vxnp5mQsJTFhJ09o/oBN0plBie53ieJxLgvkE3VFyJA98PiAZfxi
1pAr4abATC8aComoJNFqLC8+ZTBOGePJAp8BDkHb4wQUM78wErB/AHdbAG67B6ZbbNigZvoc
nR21teV0cP8+gjqAc4mHmqnDF42bhsxz0s4iI9XnmQeuMNONzMRufiESccyGz4k4C9hrmKtk
kbnJ1tDSRWcZ5G4L51t0QpuGFBiL0LP21wDSe+/btKpC+q2DqbQW0tk/e3dE4+p/fbOytPAY
iPyZ6vH6vwOh8DdDzfoRI/KAntyTN8/UdBhY6CSyXpJIxKt4r3FEB/ePQ+v0Dkao+/u9dDDT
3bCy9mgcvJI3bCy9mgcvJI3bCy9mgcvJI3bCy9mgcvJI3bCiqbCfiEH77DSsp1FFPXsZTmtJ
IYdBbTQ28cZWZirLIx+ugUuhkRSTdtBxtn48knT2k+nqPI/BcncFtB==
}
SimpleQuotient2 {
::qAl2Hgn2tj1SPOOuR47NQ/fQwn2NbG3SUvavL4BrFB5SyhkNA5oBbJKbhRiSjEd3uN2f8pK+
WungMTAyhA4GwNqiPKW1X9gUV7MrWy6/5HfIKS2J750N/W3wUP/vdeU2xFSymo36aknoFZxR
n4dHPJp5Jkoe2785FKB34R2wAjmstsMe1fko6ZeTnchu5vPKY9NRVsZBXK/FyTJlPRijL384
DKJpUgBu80YDd4cvsbitsEVzmkdjC6m/CumokNRjTs6O570k44I5MTsMxmBtk+Of5xHGYTTd
ijKZVDjynpxbTL2RyKzSJlZ5P9p4tkkkd5FxE8/pRDsjCa52sdFFPTe+xHaHnhjnpVH2lOUG
wZFHNxnrPxr/MdstNqtrnLYDAYNzfZ752hNRwxN/OdzfGUw+F2w7JbQRMd4VAlQTAV4pDTJg
GlnXQyfC0k0ESOMokvIpdgmA0vw66HPLVnZ8jP0JW6a4avDattg6IGF8HfAWkbqGOsMAUS9L
qvTwZzRLj9dNUw2TyzLTIx3q519K10o8LKPPIjplD/JxJmom3sJ0G2mAc8LAWIB1Qbg4yPMM
2Ai8fqCP4NR/25hICuz6x+xZzs/DYhRMxxeuBaa6Wg4DJHE18ArPSJG1OoPbE8rsZameCKJq
9QrIlWPuo3vOucbcBKLcFo2tAhXwGVokRIANKC2ynxwEgcWRbNgXY12JwVLOPoEErvX591zs
85uJK6BFjHGbPgzsQj1CAZOy0TPxkAnQRjSb/b6Um9G+KDflH8GgdDwzQn4H2/Hr+xNgZO0e
WUvnC+Xh0yWRZSmQhFT0N/hN3IA2LLa7EQVpWkaNv9g5EUzKffivn+FbytzRIBkePdzeocwJ
RXDDz1AMYPEuSQMaP48RbqeCHKGDbnE7ppGtgsnuXrdge8Krfv5wF8jzjjy94hjevMvR1KyN
IsRxx9KP5yn5vpsbkWymlKGIF2csQNBIuzNoyJ9KXXCavJ8zNAbAWZyTmtiOEK6fxCdLenxH
9FWXhzTocEapMJgkf0Ps2Ns2L4cCh+gbcBePg3B4xfP87R/VgvD7Dg+bQ+AgHxdDoHqGAsTd
IdAmqR5vKI7SmnG7ZzJWflijsiL1y1pC4c06VZSoVRdupyCozDoLCoLD2+kO0TXOQF7BKMW2
ZU6CiwAqFJXX0oTUbjqshFwQg5a3p2qWZUrspATalVQ8TEsmsAzJwaCMmV2Sop4tE7qNq+lb
4fnGmcYnFIf3Qix9VftA/q1R+mQiKb0flL8vyXIqyE9XtO8vS/sgIfKQlLHoKMJoylyDIYlP
HoKM4O1PRmnM3TW4JLrcZCKN3YFACWdT6QVQ+QVQCRVYVoK7VNYcTVYhoKjHRnbY58JGVuMj
VFgqwCQuArqVRWr4SrWFQ5WanCd8RXB0ZB05r3eRwUluzRjRuYsKfQWwuVW+HyYsrVnuY5M3
x627tvKCuU8lBzRKsVVU7UsUzg3AHrXSL8MMnMMr7TJP9J85BS/hgcL4L20k10ctx8mqKopC
NrpBPU9lwIViKEALIu8lZFFhy0xCtiC684ZRDa3nGfbw/YrTQOtSG1wzzgL1RVZQ/+qr/0vf
93xbKuqnLhuBHw49x1Q+4iI6FZXR6HXRaoYg3+lYCdAyUPJxTm5Jz9kFBX59mBtlvRcUpOqM
HVujqwGmPR/J9N1izYtDXSsmlcDf6N8Z+rZsDlTvynHdsFaW0f9q0+qwLQGj5B8wwNOvRDvG
nJWTCBhdS6VE5gibEzDevuR5QlXCv1VeZ19u4mVvD4X5d9qFAjoeu3J1x3xc40luXsQNQXT8
oKKEd0bSIHxyKvIdz03NAqKR5ZYNZehgsWnmSEdXDkH8pSaEBQhpj64wjC2c/BFMoFhegVYR
6tYRxKsoMELQrNNwaTDsWf8GrpIgu0bA6TXBmzcmGMPShrDczhoC8RiesWNsGtDlhHLD4JBD
gfqIVR6GSjrJrEjFB1sjwXb/KfhmbCxmNVEmR3j+jG0QnWGI6lfL6lEvC+SScXVInB0z/ICk
9FL+B01BYGIkAmgkaomF+BVL11WDROjJ9YJxZ+Xg8A9Q4bLK1kpGylTgo0fFGQRs7HZSdDDR
bKF/6cgVctLgJBeNBUT0kmC1FBe/spAHDvnEgU+oByjNcYIKmdecm1gfgjuVAjDDA9it1GRw
svrcnR21tdT0yA8+gTqAc4mHmqvD7ij6gcxL6Yb9nmWkXuLtwMeWqZ0d7eOnkYGNh8sZ4ksU
Y4kSc765Ikd25Sz2RyKsbiUa3UaaJZX8Oz4ppF+DnsbXZSBclipPIK7zo5QgkRZddJhkn/t1
flK4bgPquyZVLW+/7WqAXo9fbHVu9FDz8JOT/BU/PsBK/a/4Co4r7byfFgzO55G+H7Yi9hdf
lmmQMNNJx30EXHTiVahujJmM0vjmmE0xEv+/900kwOmY/Ijvxmm8vpjJ6CFfLNN5jdMx3Bk/
TNNRODC8gKJ5ebTu32k7tN5ebTu32k7tN5ebTu32k7tN5ebTu32k7tN5ebTUtT4Tk4YfHPit
t1IrMrMp02jkcithKksiysnttBJn4b3RSRyus4kivr+d8vwwx0hY
}
Fibonacci {
::LSpwnhn2tjVTvNvNS47BI/HE0p2tbcko+yuF8gVR7iFYP1Wge0gRiymISUqSMJ2Gv/47wvpc
aB2Fo7hC4A4gZGSODnnZGSqpbm0II9f7jPEFJYieKO+HZvMyJNNs4oPYtiT4y8koTU2xTCcR
KKqnchOvgRylckMMQwpbqqSW9HKqZm2yEL44fCUWfbUNZmTFivD9ca1zokkq4HfQpJlpHoiT
jt4h36FsJyySUDZSwG544/jcORpxRjTkGm4CONJJSMT4LTkZKXgvQXe8hBy0EjfUprGQKdGn
sJrcHKvKPDVlX88TJbQpp7KKTQy/nFNQOyxVby3VWuFt9xH6GnBzT0bHyZmUHgtSimozNnoN
viH76i6Y9UOZAgpZ6LberbIOCM38Fc8/C2g9LkhLpxSVMd4dAlkugcDPdYKF2RFFloinhdSW
KqAEKoLCMD2JA9LEW/4bClNTe8BGfh1S1xFp32BbH+In+4Dwk+8Q9MOlMHtM2zaxoiyydp5J
5bvd/20r2cmt8CbYqnC6Ya5wPwPR4N024wd+mUgjeGQABYctbJn+hhxWQl/qKpg2G9zvNEhk
rsZsfcWP6e+xeKIqltA5CCKog5BSvWJwMUTFv1ox3Jz4WaHBSA0DjTj6O0xzwNjLgEdmoc70
qGUrmFIjCWsR1GVBcSVQWeVmbAkzKal0XINvqzYsuC/tBlaJ99qQueJLvymwywGf8wY3B5IL
KeJ1RwGJaNMREgAuaIp22/huOZvhv2wXb4HgVDA3Aj/V7/n1ftKY0dYo7NezeMEU5CLbNmII
cFWMhj/HxhKg8yiLcAwrQrV9Ov7gxIK/VcZiuH3Zro9LBw79449Q1/JOrlILwAMYPkjikw0e
I2L9pmJpoEZu6EfPOzgbo9496dHsVen0v3YcO9484oYv04yoXu3p64FGGTojkaNyCB5Jz8k5
eyCPZpi0qkK7AS/Rv5JTfA0ZbSeG+BWm0xBTJTjU0gtWYcNwvA82tIsQ+x9qI5yr0PU+tkWQ
mFKGou1YW4gAIzzJUFkenqP3ZvJ9zJgMAzM9ZzSlBEsM+KPdbxHM+cswGKcRCVgwk2xxZq4w
6ww6ogLIEGDuJE4jA+AgH/9wvH9XB+OsPA6vB5DAeJubA9wtBA7YHSHgpaU+PEkdZ/Tj9k5U
bsSxhWxlZ5YqEOHteWalwUZduhyDoLCoLDorCW+kO1TZSduHshlH7MKcJRyEqFBVfmCj3Yzq
spFgIwdtrU7VrcqV+UgLtyLQ+BCmTeg7E4NBOzKfJ0V8eid2mt+5b4vgDLOsjCkXMky8+6/o
E/61Z+mUiab2ftL9v2fQUtJ7ved6ft/kdTJQtrGoOsIo2VyDIYtvGoOM5OzPQunswTW6Jrqd
VCqduxLAEs+myh6g6h6gCi6wThqtXvIzbqDPIq2ER01GWOfhRtryY1BQ1yDgcJW1rysWxlVv
KhyNVmCd8ZXB05B0FrXeZwQVO7oxIXOWtPJLY1KP/TVM25qLXscm7Ydr92HFBXK+ygxkc7pK
qVyXaIwTeT0TpDe7lTHm59U6zPJfegwbEJ3i8ZaayGch2Z+QdKo5EaSbr0o6LhlUpqUA5BiL
/2siChJ6chOeJee8Ner0vPN+xg/tWngaalOagXnBXqL3KD6Hfd9b+y1vIvp4qesUcsUgJ6Ln
D6zTCpnkdGZfeGZhqBe6XqJ1BIz8kIPZunswTWGcl3HG0W8ByRl5oydUFOqSba+E+b03UzfT
e2hrIWziuhP7G+c/1MWRF4r05RHbpmVGveXYu+UcGqYMvaHE36fqFtROSimESCZC8VJyBHuB