Simple Traps Tutorial for UltraFractal - Page 5

 

Tweak the Trap

Several parameters move and distort the trap. Some were used in the previous images, but will be discussed more explicitly here. They are:

These will be examined in the next images. These parameters can have very different effects on different trap functions and on the basic traps. The user should explore trap functions and basic traps beyond what is presented here. Of particular interest are combinations of Trap variants, Trap modulator and Distance modulator, which can often create loop or ribbon-like structures. The next two images demonstrate such structures. Look at the uprs to see how they were created.

Bicorn Loops Cruciform Ribbons
SimpleBicornLoops {
::tKWjOgn2trR2OOOux3bg+fQwPlkNjtEpOsTAfwMHAziZSCym3bQLTZTM6aFZ3t7G7HfKeJS7
uDSGEsJDwKAbgqKSWsOJLWQNTsaFr93d/dJJKhqlTW9DiuxWOVUPM1/phhR5qknFHVnJl5pJ
n5iTnVkiMUSL7F+kkkrXa9E/oQJJr+7D9s2jJU2UPXp+9oNoU4Xa1q7vzMfzG1xVnHOS6esV
JGZSZSNbUJG6Jr+keOJoVJDjsah6FSWaaiai1LHZT8eF5Fu0yhpT8uhjcHTaf5+76Yjji+Tm
doGmLfikuG26tp4UMuYDggw5p7AWWWk0xO1TyWj2izSrKTY9nAdPv4+7aGmAeysCK7iQzHYJ
pJj8p6z86vQGaaSaEt8eWHYum4HW/YT3qEYLnehs67fsVwoMR7wjqVamM+giLVEQaBwD2BMc
EY5DjZahsoEVs5Dpr3qBu/ORvUckb9JadvBEh+he+93BLdeojcYagJClGmVronzmSkDtijkt
5pFArvVWrbNilTclGvNwgR5D/p+zs+a+xVgg9E4b1uks1ZAG/Co9KQIcKEM9HMm/PxkKgQ9Q
7wklyHBDGT7NByHFSIyQxhFO1xatLGmlZ6ktOO9EbikbHgsGn08QTPmUPIBS2Av01INz0jjs
8QCBXwKNWFHXAYNPYyvoDSAwJDsh6BW9X8hO2Z3/YHRrYs2WjH2uE5XEjEtbpf4hhmH0jIN4
aoTweka5wITBE6NDp52+ntpF7d4UHO1hbCXJr6E9/q9/W6v2Y/beor5x+69Ewf2r8oUCTx6N
GjRyqfzqYGwOIn9AglVZ5qVybewtJG9V9yIfPRzPtjQ6mPYn3Ts51Wmw27MtH2D+ZtyUPu3E
Pq1x+9EsmXo9k9WZCEgnYt7DWye+pphB1e9uqdb5BtppvwjA2VWmfHkMkB05HZ4wA5BwiAYZ
AsyDqVEQydax4zAKed6G4PszsmeY30xPGYY7kieAWCIBRCS437dnyvwf2o3aYFbSZQ2YJAZ7
Q0WMluhn42DY2P7PC0Ydwkz2k6cDvnXgsaPcs75exRWSm7MCm3VM7JCOCnf4a3gzx7cBOBx4
Ei9BxuggHYGCHM+xOlig1PY8nt9OJVb3vxsrt6WxQb4js7xmdysZ+NWZPhbtp2o6xhW2Um3R
ZwQXhhNY2FLMxc2BFmguZYcEceEcx1LvMaoq59xG6ZBNBepGX90gKa1mAKpibPMR0X7jq24w
B11jZ1qwat61VqVQOyi0oIF6K5OPSjCglRKTQXiVFt8YZCoM+Z7E9L3g/CZ2tdJA+SQO0h+0
3L2nedwvOkg6D9phYw6RaI+n6SAoXnBQvOFgGnDQjTCoxZB0QaQAETjD/zDDUEALDgV05kB6
1HERvJjgGdQENKhgGnRQjPIiGfQE1FkYTP8YhED67fAE1dAkN2ieVGzVYY61ZM0o4rIYcEce
Ecx1LvMaoKaIKjGHmRDZM0rzYovJjheVGjHzd5aIW7mqfgbDP052ye/BLmV2LrZQZep2p0AV
hNzD38+Q2mPorLQF2ENmUXwmFsmUYVmnNHEW489HPq3U7tvaoMTIg+MR5POZgQEmNWopvkMN
8YvueQ55hn7C1VdGSrN8oGqEDuNXLKdmyqW9639Tv+T68lXtjlRWpJ48+65ge7kQ2J5nB+tz
AHzGoMvMXoDAiDgoAYeAsIAWqBdKxzOrt6Z0MEeGKfGqYGq0HmPS+ObKc/j6zOmTitoobwx3
g7u5LmDFkX5TDzolWUt/6Jl74D1FIjx8QDD5jhas416RStgQQoQReVb5gD3AD7/AqLL51VGH
q6S8tuqLFBJxuYTpA/Buo1MBgipOvzmtXwmtTXEH8maAuGFsqamYjezixQeU1F18ItiOQURG
PD7YegJaUvTzwCxrR8DeQk1iAWhxT24wT9sp2HMmBLLsEuyWgv1WUeltoK2Wo1Wck2ij02Q8
G7YZEcVQBs7uxYOxZWj5JCcdw8YarC8Kwgt2Q2atj5RwWGhjiIofHIxAOTyaXzuiNeLoFdAe
M9TcJpwFi5qcRNpdP2XLYNdWeoteF3a9ySvy8llNfVhaCsehrp1oH82PAuOymBMJCJKpGOzq
UfuTdtXRUT6ke9RiT8fEyDsk0lXUZBxOQ5ZgVmZqhQ+1rRwzkhoNjg/6UkW8qICJDqmAOTU5
vrGB4hRxAGTfPJYS5DOTeqDTHiqzOPNxOKgVYfr/QXHAL9duIBG9Fj7MxPv1rSkdQJCnNB4w
NPmHoCH2v1c1tASIhyYSsPLtCXluLD5oWW6Ijz3hrQ7ckzwIH9dZp2Xt75T2uduhQoidlVOy
oZOlhKx7y363BMGbVD9Ylo0UYM4l+2GgY0QnsDhSeJ13eEURxXTjVy+KasicoR1qvD8XedW5
bp2p8ZwaKUPekv0Oll2ps0Oll2ps0Oll2ps0Oll2ps0Oll2ps0Oll2ps0Oll2p8tY7Uy26b3
RZVVFKrwRXPL3Ip/M1mD8/m2c8L1vUki/Fd2AnttqsKLNP9/xN34PCFxq5ySvNW6txSvNW6t
xSvNW6txSvNW6txSvNW6txSvNW6txSvNW6tx3k92w/FesNFVWlX6IXU4/KOKq2h9E9zNrosY
bFOPiN4/f0jEK8C3TmLVuqNJvfbRgYhvu+f8fazPGFX4tuiVcXpEKsHnlnVsTXef5OAu6/uP
cjc02yidFZ44vdDJrz0eDv88D/Z6n/4HdSS/gQyJ/N+UrJ6ygOSWj2sWnt2kR+MXKfRDOfJY
Di8XnEnE9+eX0MfTo5S5/iptG6SX5KmrkwxhnBZFFg9v2aEy924yZGHtXIA14wlCTNtjw4Zb
MpR6zUMCluQc0W7jONFHNXkaTXHJP1Mdh2pOS+0wJ2kQduTUrrfo2V6S9hW/LKVthamqP4r9
vW5h4jSTLzK/Z+bxabRBOt62PFrMcGCVu9NfKWA9d5p7Kf3vFr0dbRp43+xYVgzwY0237jxK
vCVWUg+qyA/n6KtqLC==
}
SimpleCruciformRibbons {
::o67h5hn2trVSvtOOS47BI/HE8pZmeSi2l9MgHMfzyl50bm7GMy02CRbtEd2Q/jfqiLiUyLx+
  B8u0tDSAqikqIrNu8laTHLXwK/b3fnnnoQUyJz+vFVtl8v1tPvYTTX13Le+5m6+ZevVsWsjk
  G77tjXsdngkEE6Vy+g31TiwvPvjvuQ0Tm99maW5aPKrrmLE/9wnC9hf9zmd/dyxLntKuYXza
  S1+SRRLrv3Ln1KKaqJz+P4Y8Cm510yyLEfQC899Eds6+WWHvWQ+g3rkQ3WeVzaOpvZjoEXT3
  fXFrttoercKyhBz7I+P57Vx2WTCu/OUj2XyUrA27FY/g499a5d5745vQa2sxbTRJvmVBGjO+
  zPufT1MPQUdfQm9vh1UZPr6jgZoIaX9Ko+4qGXjtraDIP4/YWw8skn8fMJLBaTw7FEYZCkPz
  KKb2Lkzo/93VU3Xsmrs9o6tBWM1N187vDG0hdVWUzZde9NlFrJzj9T8TSnuUzLlrL9qtX6KB
  B02v6fWvjVnzXPzdR/YAwxfHUeBMzKNCH+KpZ9fV01LgWybKb6UN9dOrEaZdRP4tFc4j6qkt
  A9KHGZuVKvy6Ixq+gpKNJMIL2bzqN1Rk8meoDVIl/jRoIVjKOKObeoSG9Q0DIGpNRLSgGFIr
  /FMKAI7k0yWfml/iJ2QN669VEUDZllSPt6T6fpolger6mVNbWh90L5Rqtwc4rkQLTANUL7Cl
  2y3Ux9L18UNPVzLjHJzqKq/TL/r0/s0RsZV1m915LJg3sWYYpEmgVLtMtkZ/lZuCg9c/grAM
  zClUVr8Nr0TiUfFf0yXSQ5h5N96xDG9lkhsXlcYLJPGiWolgFGVn82lgZ3HDPbrXSQ7vIcJZ
  paVBLhXZlLt2ya+2umGxSceR/XsVf2UnYYALLLwMD9sQJp2TyisdEbJTskpWyMDJqK+PqjGY
  tvBsRP6/E8HMzsN1wshBSSaY66LqB6egxukY1bXaco9vwfTq3Itg1JkMPpaAy7h4N3Wqaelr
  2CZ5gHx2GrCGcwT+aHxx8DkZLhtX3VXsm5Z2vghKE6KG8EWHh2PM2Nod9aXgehIdCu+AXXg1
  DMQFZN+uOlEr13a8Hs96VKa3nY2RruaZgGeH7urZnMYmPwKbaYqNVFX32Uy6CMOKJX4IuIJn
  6jLkxcqOLkBdD0RO0xO0Jj/8UnuyGmHVoniUG45Ld1dNCnvWGQ1L4qtTKqzNRVPp5B11wp0K
  73q0rRqlddE4oROK0o1dsjGZJTdUGru4qK46RJEQZMjWv0ffC/HkB327WyPsrDM0nesYf64g
  fMkgaC9p2Yw8WqN+nqTAojzAojTBou5AU3kAqbWA1mGYJjouh/x2OSskpWyM6QyAd8GR0JZE
  UnNioOJEU3MCq7GRU3Nio6gEV6hhzmYQP+GQU9GQqYL6oMmRcR0xZMUn4LH6IH6YH6kxfeqT
  XZUbUG1NMjazYojzYoHkxQHlxY40Hvaj1mcRI48wnr0TZtZjF5XW3nzgry6rGyG4+WDyQPuH
  Ce6B8mBC7kgc94VzUk5kEly8mcjwEtvf9acSVn/iUByQAcPx+ftTSFSYqYhN1pkum914N/63
  18Wl9KW7g0apMyhLlBnnjLlK5Fsm95v8bf+bY+ynq+CIzwG0efcMhHOoQ1gMjI6wRE5KG4Gf
  B6QHgMySGaJjtkJWyUkUrEvpt2i3CHoiGoiHoSGoSNh5tkfRlCXvH37YIJWxGOhPaCv+kPXJ
  kQ+k31MwmqYR/1rC92Hi3hMG990hmXbvlFPH7xXRCBhFCynolD2cDMs/P4mZefOT6QFv7eqr
  49E7KR9xyrC8NeRpcAQLyb6tTO9FsB707FPbM1Adeo1qiCRF9G4yFaYFvLG6psoCWqhSPDbd
  sVIIrxpJFRxnOyDeJkyiAWh2tq4wt1suyVSzgSEqGGZLimaLSHZLyctFo2G5otROarNejtO1
  hOzqAqZXaM7wXcgzwWCccwQfoVBenn1WLbWZtdlh1W6wH60AeLZikcoJldNYkYMWQFbD8o5X
  59kEdIm+mLiO09oevgy0pkBa9Sma9C8HZ+CCGOqQ0BWP7x0I7zG7HQn7YzAh4w4kUD7Zli77
  knbUERHm0jbJ2x/VIPQ1Ee9iMFZkmsfHIK5IRqQz3jMRDNDRbyF+ndOaxnFOMBwtJg9EFmzq
  DBebvRAHDPnEMp8GtJ3XzhhoY252O26C4LUvmvpqCo7NIU4B9+h0d6ZG3jz86rgrIsTGgDn8
  wkIK8Qic37CIfEuFjn6dqxpRwPz1tGEFpbP03fxiAdzhppqpG7JI0Pex85gXRDMhcZpnQw/b
  kvB2iQcavcAPC/CAPuhsxPVkNUZno1sQsfNf2hocYuAmBojrGlD9O8uAdclocokgBojfAUO0
  3hzA0x1gyh1GOFojLEljJCQB0x1iyhFYkxAdclocovNnFojfAUOMPjI0icx1jyhehoA64HDl
  DtIkAdclocM9NFL1RefNKHj8DH+WvLElDX3wBAd81ocM4BOFQHXIKH231dEgO+KUO0LizC0x
  5R5wFQgjA0xlgyhFVgDA64CQ5wg35RA64aQ5wRPCG9W0LEljBlwZMXLKHOqiVTuSUOUywA0x
  PCKH69ppDh/3Q54GKH3Q54GKH3Q54GKH3Q54GKH/sR5IIwAaRUUSyisF62Tz0tnEsILNOzM8
  4EHcOSzyyCDS099A8WcN0IzXEPfR4PJ8PiGh/xvHx7ACL6R1DiZneKfHvlzkP6RBCSc480kF
  JBRS8nOEKkrAHkhDDVQhMCHkvV20zniEy/AubLKohn4dyS94iQARJmTWqHXCCI6/dlHWqHXA
  CI6KY4Ul6x5QAxCYxXVqHnFBEzVaPRpeceEQs/bW/qS94cIgofV0ZL1jzgAiZztzXqHfJCIm
  XkcmS94cIgYr4gzVqHnFBkhX2d2S94oIgYdEfdpecaEQMOiLrUPOFCIGD5FUqHHDBEznfpl6
  xpQAZA4pLoUPmiAiLWBfZpecKEQsAGc2S94UIgYwK48l6x5RARvEORpecRIgMoFTL1jrBBkB
  dZapec5IgMkcMtUPuCEQ0hEjL1jrBBkRFcGdIH4yRAZogzsdcDBkbIgcDBkbIgcDBkbIgcDB
  k/gVnHJBBpxxHWnHBpyOyOelekEvION5qQ64/HJmxBC=
}

The next set of images illustrate the remaining parameters on the list as perturbation to the first image, which is the base image. The ufm used for these images (Cayley Julia) is a convergent fractal and uses a custom convergence method. 

Basic Bow Rotate 50o
Skew 30o Trap Offset
(0.0112426,-0.289941)
Move offset
(0.0816568,-0.0473373)
SimpleBowBase {
; Copyright  2007 by Ronald Barnett.
::gpj7Whn2tv1WvtOuR43DQ+PI4na72kISdzuF8Brt7CUg2X2dfPgRS2W9obrEdijx+jvzw72x
5Y7iTB2W4AEgZ4lhzVKyPQvakXI4N/l7vLIQULaqYz+562hmq8+3y5TVzCeruUshlGHGspqe
9GBLhQDa4vXNOxixptm32yZkHzyCP4PaQxYVZtYiN7n674NlB58xuKh4vSfiG/ENMMb293Jl
kc5brEb6LZtbbE1D8ppgC+gouvjN7fgjJIaWQ/AvoW8OjEGGIG5dTD8xqOB79qJlEGXX12XW
xm6XJaQt9+7a5DD1drlLRBM4qR2DhPCLeaGJLKLZxThPSTSSBLMlEFmG0yX3xSfMjmlmOPg3
tGcKPQifMcRc093tqfE0QuSj57qR5BqTYwQ1Yxmqivw6XtKYVdTVHvF8mjVv842VtzCgle8d
2svn/eT17P8v22MDFxwzvwrb63KYoOB/RgmGIoKGRjCjTnnug8EqwxhZUaaSCZhaeF9dvi2L
7fWvrqMCbZ7kovFiEJ3fXd3UdZlKsiOqVga213Vd/dwa9xuaq7q4jBjVDVcBMwgp+m6SW4xG
ShSr12ykMTBEyw0z/Q3GeXRV5MQRA9aCDckHRrpaH4aQhq0bc4PLDS/Y94kQaJN9jqm+7g7k
jBd1YLrngcIBs6GqA5gnwVBmgkhlol6r8RWZ1KOkAp6mRQxs65VdRsi+JoRVycoUvKljAImg
cSY6S/jWUoLAEBf6LmcrhnHlsyOehXI7QP6uttSBxbak5Dqem+S9ALUN3u+n7X9M25E4UHkU
rhlBpH4CgrTSjSb5bq6slO/VuupcNvMRnNrtu7Ps8Pn/HnB2Y7qtdFLZQktTYYzZcBX7Kb7H
Yz+Tz8FA/lJl5AOXhSkKNf1z6VwGzefoaJDFJGbm0TB83LZw+EolvEcqU0zsEi6olUMgNFmo
EwQ3SGmiKoLZLBdCnyLTvybWqXyuq1j99iloChBsYtpYCgJGTD8rciZRm4UHZkjM2RmIJVax
EP11RmhEtClyzHeDojeM8J4fYZ5r6glCycUaBwCL3UdHQPBMOVC2kYpM+N9lq30UC+oQ6Cg9
X0rPszAkrZbUGVetStp0Srz21GvVN45k0k05qdByiiyi0hEXExWugBF2slwu6b6qL5BEMizN
BHbsRGakxFdYRGVUSRFYOMuYDL2EMIk4HR8dyUXIxFRcBELVqLWYDFomqVDIYcUsQWEriDeh
B/ogpeT6998zKP/Jd8qSgh+G+IR6t1ZsYDUZDGuIDXtMF0ST9oj8ERtMR02ViHdqHdmdRUZi
GFQlNCKMu3TvwMKZK2koSt5RdXhJT7JNPYrSOP7g4bG0DsJPTyziOwI8GTsn54ZNeGjzWOyU
cWiZ0aVf3R8vzsxsdM/aHTHYqf+p2NK/jZ+5uEqXytp/5u8/cdBQ+h7LlfY+fuu6UWDk7XEk
7XFk72XyRGl7XcE76IxRm6IzytFD5HWNkfU5QuX9QuXBRufFRutkAybyN5QofOXHRU1GGOXh
R+p3RCUvnspPk8DysOgLK/gsI7QrleHXFjHdsHdyhTP1rrscXWmjU6hsJZezWa5foiJ/gKGD
n+Dt25e8JkgPO+SreJ7M7qInZ3UBHOpYoaIrgDFalhecPAHkDPmgwtII3Ee+RFZBLRZMvJ3I
U/xTeZJuoy9pEIFRmCgbIO9rjSKKjryFW1lyG732Vi29m+3adfDfDUWLlRBcSN4j7oq0KP11
s9f3vt/3w6l9q+IsZYD6oPOG6HHEVNIzIi+4Ii8FDcMQiO1BIjckUHZsjMxRmikaj4Nt3W8G
1SFZpitUJWqUTa+A77Ulwdbx9OsFxKW6R8RHxH7feEVTJs9Vj9W2UFLGveVYOd4OoiRedFZz
l2oRZVB2ToiESCrFs9onD2cDcs/CcGtg9zkBUxO/v6K2l40E1klHF47rqbkDAaResvNylvmb
9T7qfx4qB6CqzriCRl9S85oGWxOhtnm6WQVpyIDvM2JEk1E0kioevn8grUp8IgXYYtKPcdHf
s5ZpbQJCVDH4LiO2XkegvIz3XgWbkn1G5Ztu8NeZqHdmzAUru0ZOWxVOz1M4zB2+QvCcVSnv
W2syb7LDnv0jn61AeJSmk02kyvSOQMGPoitHuo+rVTyr7gpY6TuIGxwj6yDKXnSGo3L5YvHJ
8A3HhY/UhYE8eujNgsvY8fAdhnPDEiHjXRNsnVKuvTRhxQEjYRPul4Y1vC1BqmwjXkpIj0kT
bARpuNGQRNzHZisNDZbSFf/onVsv2jhAnmA2T0etBKw76NC4443JBXaVv2lHq5wUUs6c9Ivs
Gmh8CyTtwH/3gOa4TKyLmCqQNUjBnMRdVUWaaYamut5mGpEomPR6LV9QSNdRoJkYqZG0YT7J
RJ004Id7RU5kVdNPOLDcIa0POSxMajBbEaSy1gqC9GqKfrRVBy3mkRif/hvyS0v7DsSH445N
+opM3JmTAoyZQTRX1eOAVONaKuF+rBoyXDNFz1N+EAVuQ0UUbe85Aq81QTxdR8PBQlzimi+M
ffKgKnFNFNiTfCgKXAaKmrq81AU5cop4u1yJBU5CQTxd29TBoyN0UuhmyN0UuhmyN0UuhmyN
0UuhmyN0UuhmyN0U+dOaKF9ttA9k5NmEA9+uMcGYG3jzMQbgJ4WQXegE7BmiFKlsIKZRyxgv
EnFHnuI9DIvktIim5JGH2Lxh05E6CH2LmFgkMHkW4/lwehcGsXuByy5BZZ+ZBZhGuIjkQBFU
mH/BAXuC0Wsf7VB4y5Qb5vBHkGFzRPmlTg5ylA4iSK/n9CW8AcxE6u4XwyxAuoPE5l8CWOGw
FHCPX1LYxB4yRC4SeBLfEwlDue/5fBLnAwF/r2fuXwynB4i9+9X2LY50AuoVkz/CW+cAX0i4
cvglPC4yx3mZpOl78Au4eURn6enXKgLmXWkPmLXPgLmwAxdZzrBwFz0PEzlrHwFbUw56vYAX
8hm4AIWuGAXc4T411lD4iBaixl+3g86AcRrCOMXueAXsWB17KxXLgLWbx3UuOAXsosszB/y1
C4iOlI3k9f1AucAQw52agLHwFLQwuOuB4yNAXuB4yNAXuB4yNAXuB4y/PD4yiYHSJpG8QSzy
yoEDiL4g098tHikc4GqrlfL4AUS+fHURIVPQonHSkPiHiGkkvh/ae+cQP+x6XgL1vsr8X2A+
0JtJ4g8g6bQ/gygW1wfFC5zQ/atYbZVQsee7RAJmBJRBD91dC8bpD4JmpyTtJbjpPFh9qOwp
bYRhmMezlkwzEYqtNQ9kJLUV/Ag2UvSl7vabJeYgHjT/Gm7ncKwGTDjjpELsihegEGSXEafR
Xhevcro5EaEUkoBW0OHI/cBNJ6qKa+3An9xusC==
}
Page 1 Page 3